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The damage occurring on the micro-structural level in a commercially available filled epoxy adhesive has 
been investigated. Scanning electron microscopy of loaded bulk compact tension specimens has provided 
quantitative data regarding the size and distribution of the damage, which, for the particular adhesive under 
investigation, takes the form of particle cracking and debonding. Finite element analyses were carried out on 
representative unit cells of the material. These provided properties for the base epoxy adhesive which were 
used to determine the macroscopic elastic constants of the damaged material. These macroscopic properties 
can be used in further analyses to assess the effect that the presence of damaged material has on a system. 

KEY WORDS Adhesive microstructure; unit cell; particle debonding; microstructural damage; macro- 
scopic material properties; particle filled adhesives. 

I .  INTRODUCTION 

Epoxy resins are the basis of many modern structural adhesives'. Neat epoxy needs 
toughening, so another phase of rubber is often added. Unfortunately, rubber causes a 
significant reduction in stiffness, so the adhesive is filled with a rigid phase2. Manufac- 
turers have found that certain combinations of rubber and filler are better tougheners 
than others. Much research has been carried out to identify and model toughening 
mechanisms, notably by Kinloch et and Pearson et a P 5 .  This paper presents 
experimental investigations of damage, and associated mechanical modelling in a 
widely available commercial adhesive system, comprising an epoxy resin filled with an 
inorganic second phase. 

From an engineering point of view, understanding the toughening mechanisms is 
incidental if no way can be found to predict the failure conditions in an adhesive joint. A 

*Presented at EURADH94, Mulhouse, France, September 12-15, 1994, a conference organized by the 

** Corresponding author. 
Section Franpaise de I'Adhesion, division de la Sociktk Franpaise du Vide. 
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finite element approach is attractive, because geometries may be modelled that have 
either no, or a very complex, analytical solution. However the damaged adhesive 
material properties must still be found Since a loaded joint contains regions with such 
material. Einstein6 in 1906 first investigated the effective material properties of 
particulate composites by calculating the effective viscosity of a fluid containing rigid 
spherical particles. It was not until 1963 that Hill7 and Hashin’ deduced elastic moduli 
by making use of the fundamental postulate of elastic heterogeneous media states, later 
defined by Hashin’ as “the stress and strain fields in a large heterogeneous body that is 
statistically homogeneous subjected to homogeneous boundary conditions are statisti- 
cally homogeneous, except in a boundary layer near the external surface.” “Statistically 
homogenous” is not the same as being structurally homogeneous; indeed, every 
material has an inhomogeneous microstructure, a fact that conventional elastic theory 
ignores. When the microscopic elements of a material become too disimilar, predicting 
the macroscopic material properties becomes complicated, and principles such as 
statistical isotropy have to be invoked. Simply speaking, a statistically-isotropic 
process has statistical properties (such as average’nearest neighbour distance) that are 
independent of sample orientation or location. Ripley l o  provides a good introduction 
to this and to the concept of structural homogeneity. 

There have been three main ways in which statistically-isotropic materials have been 
analysed to predict their material properties. The direct approach7*’ attempts to 
express the effective moduli in terms of the individuaI moduli of the constituent 
materials. I t  really only has any value for the case of an isolated particle, or for special 
cases of finite particle concentrations, for instance weakly inhomogenous systems 
where the local moduli vary by only a small amount from their average value. Hashin’ ’ 
modelled a composite sphere assemblage, but only obtained the bulk modulus. 
Similarly, Hill7 could find the bulk modulus for an arbitrary phase geometry, but only 
for materials whose shear moduli were equal. 

The second approach-variational bounding- is so-called because it identifies higher 
and lower bounds for the shear and bulk moduli, usually from consideration of the 
expressions for strain energy and stress energy. If high order statistical information is 
available (i.e., the variation of the polarisation tensor), really quite close bounds may be 
described (Hashin and Shtrikman’ ’), but once the ratio of the individual elastic moduli 
exceeds about 10, the analysis is no longer strictly valid. Thus, i t  cannot be used to 
model holes or rigid particles. Close bounds may also be derived for a particular 
statistical model as long as the limited applicability can be tolerated. For instance, 
Hashin’ ’*’ 3.14 used the technique to model the composite sphere assemblage by 
considering the minimum potential and complementary energies. 

The third, and most popular, approach uses a concept known as the self-consistent 
scheme. A particle is considered to be embedded in a homogeneous material with 
material properties equal to the (as yet unknown) effective macroscopic material 
properties. It is treated as a boundary value problem, with the particle strain being 
expressed in terms of the effective macroscopic bulk and shear moduli. The embedded 
particle may be ellipsoid (Eshelby” and Wu16) or spherical ( B ~ d i a n s k y ’ ~  and HiIll8). 
The problem with the self-consistent scheme is that it takes the particle out of context. 
It assumes the particle sees a homogenous matrix and is unaffected by the stress 
interactions from the surrounding particle array. In other words, the particle by itself is 
not representative of a typical, statistically-isotropic volume of material. A method that 
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circumvents this problem to a certain extent, known as the generalised self-consistent 
scheme, has the particle embedded in a matrix shell, which in turn is embedded in the 
homogeneous material with unknown macroscopic effective properties. This added 
degree of complexity gives a result that can only be evaluated numerically. but 
Kerner” first gave results for effective bulk modulus. followed by Smith” and 
Christiansen and Lo” with an effective bulk shear modulus. 

As far as damaged material is concerned, the self-consistent method has been used to 
de:ermine the effective properties for material containing an array of cracks. Once 
again, there is a distinction made between the self-consistent method, which considers a 
crack embedded directly in a material of unknown elastic proper tie^^'-^^, and the 
generalised self-consistent method, which takes the crack to be embedded in  a matrix 
which.in turn,  isembedded in the medium of unknown . N onlinear 
simultaneous equations for the overall material constants may either be obtained from 
considering the jumps of displacement across the crack and the discontinuity of the 
displacement field, or the energy of the cracked medium only and the energy of the 
crack. the inclusion and the effective medium. Aboudi and Benveniste26 solved the 
problem for a randomly orientated and distributed array of microcracks. Other models 
have been developed to include anisotropy: Gottesman, Hashin and Brul12* use the 
self-consistent method to predict the effect of a perfectly-aligned array of microcracks 
on the moduli of an anisotropic material; Horii and Nemat-Nasser” consider a 
randomly orientated distribution of microcracks and include the effects of crack face 
friction in the model. Since the frictional effects can produce directional properties, 
load-induced anisotropy may be predicted. A problem with these models is that they 
are only valid for low volume fractions. Santare t’t d2’ considered an elliptical, as 
opposed to a spherical, inclusion, and managed to obtain accurate results even for high 
volume fractions of inclusions. 

An  alternative approach to modelling the effective material properties is to use a 
finite element analysis. The method used here to model the adhesive is based on the 
concept of a unit cell. Davy and Guildz9 presented a statistical justification of this 
method. The filler is assumed to be uniformly distributed in three dimensions through- 
out the adhesive, and a Gibbs hard core process” is used to determine the expected 
dimensions of a single particle surrounded by matrix. The shape of the cell and particle 
is arbitrary but, for this paper, a circular particle in a squarecell and a spherical particle 
in a cylindrical cell are considered. Analysing the unit cell is equivalent to analysing the 
composite material as a whole. 

The finite element approach has been used in preference to the other closed form 
approaches for several reasons: 

0 The development of an alternative to analyses such as the generalised self-consistent 

0 The unit cell may be used to develop failure criteria as well as to provide effective 

0 The finite element philosophy is more readily understood. 
0 The finite element unit cell may be easily adapted to model damaged morphologies 

that are not amenable to the techniques discussed above. 

A problem with using a commercial adhesive is the reticence on the part of the 
manufacturers to reveal the exact nature of the material’s component parts. The uni t  

scheme is in general beneficial, since one may be used to verify the other. 

material properties. 
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cell approach was, therefore, also used to determine the elastic properties of the two 
phases from a knowledge of the composite material behaviour. 

The structure of the present paper is as follows: The first two sections describe briefly 
how the microscopic composition of the adhesive was determined, and how damage 
was seen to propagate within it. In sections 4 and 5 ,  this information is used in a finite 
element unit cell analysis to deduce the elastic properties of adhesive containing 
damage. Section 4 discusses the theory for the unit cell and presents a validation of the 
technique using three data sets for particle-filled matrices from the literature. In section 
5, the unit cell is used to calculate the material properties of the adhesive’s constituent 
parts, and to calculate the material properties of damaged adhesive. 

2. DETERMINATION OF MORPHOLOGY 

In the system under investigation, rigid inorganic filler is present i n  powdered form. In 
order to analyse the damage, it was necessary to determine the volume fraction and 
average filler particle size and shape from scanning electron microscope (SEM) 
photomicrographs of polished samples (see Fig. 1). Photographs of the adhesive were 
digitised using an Epson GT-8000 scanner, and image processed to locate, count and 
measure the particles. The size of the particles was calculated by drawing a best fit 
ellipse through the particle boundary and finding the major and minor axis lengths. 
The particle area fraction was found by dividing the total area of cross-sectioned 

FIGURE I 
culated volume fraction was 12%. 

An SEM photomicrograph showing the surface of polished two-phase adhesive. The cal- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
3
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



DAMAGED PARTICLE-FILLED ADHESIVES 209 

particles by the overall micrograph area. Assuming randomly distributed particles, the 
volume fraction can be set equal to the area fraction. 

3. DAMAGE OBSERVED IN COMPACT TENSION TESTS 

Compact tension specimens of bulk adhesive, 6 mm (thickness) x 24 mm x 25 mm, 
were tested using either an Instron 6025 tensile testing machine or a special straining 
stage designed to fit within the vacuum chamber of an SEM. In each case, the damage 
observed in the specimens prior to catastrophic failure was similar. The main crack is 
banded on each side by a damaged region of size approximately 30 pm. Apart from the 
main crack, the epoxy in the damaged region shows no sign of cracking, and the only 
micro-cracking present is associated with the filler particles. They have either fractured 
throuth their bulk or debonded. The in-situ SEM tests showed that cracking and 
debonding of the particles preceded the main crack growth which proceeds by the 
linkage of these defects. Figure 2 shows a photomicrograph of a compact tension 
specimen through which a crack has propagated, leaving damage in its wake. Ellis 
et ~ 1 . ~ '  noticed a similar phenomenon in an epoxy adhesive filled with calcium silicate. 
In order to understand the effect of the filler particle cracking on the macroscopic 
material behaviour near the main crack tip, finite element analyses have been used to 
determine appropriate reduced elastic properties for the adhesive. 

FIGURE 2 An SEM photomicrograph showing damage on the surface of a polished compact tension 
specimen of the adhesive. Note the extent of the damaged zone and the two types of filler particle 
failure-debonding and cracking. 
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4. EFFECTIVE ELASTIC MATERIAL PROPERTIES OF PARTICULATE SYSTEMS 

4.1 Introduction 

Bulk tensile tests using dog-bone samples3' indicate that the adhesive has an elastic 
modulus of 3265 MPa, and a Poisson's ratio of 0.406. These, of course, are composite 
values, and if the system is to be modelled on a microscopic level, then the material 
properties of the system components must be determined. To this end, it was decided to 
model a unit cell of matrtx containing a filler particle. The problem in doing this was to 
find a cell representative of the real case. Davy and Guildz9 modelled the experimental 
data of Smith 3 2  for the elastic properties of epoxy filled with varying volume fractions 
of glass beads. They present a sophisticated statistical method to determine the 
dimensions ofa particular unit cell shape, based on interparticle distance, and obtained 
very good predictions of the data. 

Any shape may be chosen for the unit cell. Every shape has a typical interparticle 
distance, and this must be equated to the expected interparticle distance of the filler 
dispersion. The expected distance is derived from consideration of the Voronoi 
tessellation of a random three-dimensional distribution of points. Because the particles 
have a finite radius, a hard-core Gibbs process is used to derive the actual interparticle 
distance distribution. In fact, the cell chosen by Davy and Guild was a spherical particle 
within a cylinder, as in Figure 3. The theory works just as well in two dimensions. 
however, and the cell chosen for the remainder of this work was a circular particle 
within a square. The finite element model is identical to that shown in Figure 3, the only 
difference being that two-dimensional plane elements are employed instead of axisym- 
metric elements. In order to assess how closely the unit cell approach simulates the 
actual material behaviour, it is first necessary to devise a way to load the cell in a 
representative manner. 

b 

2 K  

FIGURE 3 
used in  an axisymmetric finite element analysis. 

The axisymmetriccell used by Davy and Guild. showing within i t  the  quarter cell that may be 
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4.2 Boundary Conditions 

Davy and GuildZ9 loaded their cylinder by applying a known strain in the axial 
(vertical) direction, whilst constraining all the nodes on the vertical faces to move 
horizontally by an equal distance (Fig. 4a). These boundary conditions imitate the 
effect on the cell of the surrounding material. The elastic modulus is calculated by 
dividing the resulting average axial stress by the applied axial strain. This operation is 
only acceptable because the hoop and radial stresses average to zero. 

The drawback to the cylindrical unit cell is that it does not behave in an isotropic 
manner. This makes it impossible to determine a shear modulus and difficult to 
interpret the directional properties of the cell. A two-dimensional square cell, on the 
other hand, although not being isotropiceither, can be loaded in mutually perpendicu- 
lar directions and also in shear. Thus, shear as well as direct moduli may be calculated, 
and by applying suitable multiples of unit strains, directional loading may be 
simulated. Unfortunately loading the cell in this way constrains the boundaries 
to deform in straight lines, something that does not happen in the bulk. Some way must 
be found to load the cell whilst allowing the boundaries to assume an appropriate 
shape. 

One approach is to require that each cell must remain fully compatible with its 
adjacent cells. In other words, the deformed cells must fit together perfectly. Although 
there exists an infinite number of possible unit cells, a square cell is obviously the most 
convenient on which to impose the necessary boundary conditions. This approach is 
different from that of Davy and Guild who assume a property function that relates the 
applied load to the required material property (stiffness or Poisson’s ratio). 

With reference to Figure 4, a point, e, on the left hand side boundary of the cell has 
horizontal and vertical displacements u, and u,, respectively, and a corresponding 
point, g, on the right hand side has displacements u, and ug. The cell is subjected to 
strains in the horizontal and vertical directions, and shear strain as indicated in Figure 

Ex 

(4 (W 
FIGURE 4 The different loading regimes adopted by a) Davy and Guild; b) The present authors. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
3
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



212 I. N. BYSH et al. 

4. The boundary conditions applied to the vertical sides can be written: 

ug - u, = a&, 

u - ve=ay  
XY 9 

where u = side of cell 
E, = strain in the horizontal direction 
y,, = shear strain 

Similar conditions are applied to the horizontal boundaries, this time employing the 
vertical linear strain. 

4.3 Validation of the Unit Cell Technique 

Three different data sets were chosen: 

i) Smith32 presented experimental results for the variation of modulus and Poisson’s 
ratio of epoxy filled with glass spheres as a function of filler volume fraction. This 
data set has been modelled using both the axisymmetric approach of Davy and 
Guild, and the two-dimensional circle-in-square approach. 

ii) Pearson and Yee33 provide data for the variation of modulus with volume fraction 
for rubber spheres in epoxy matrix. These results were modelled by Guild and 
Young34 using the same cylindrical unit cell as Davy and Guild2’. The trend is for 
decreasing stiffness with increasing volume fraction of rubber which is in contrast to 
the first data set and, obviously, models the behaviour of a traditionally toughened 
epoxy resin. 

iii) Hasselmann and Fulrath3’ obtained similar stiffness versus volume fraction data 
for mica particles in glass. Their work was modelled by Agarwal et u1.36, again with 
the cylindrical unit cell. 

The material properties used in these analyses are shown in Table I. Comparisons 
between these sets of experimental data and finite element models are shown in Figures 
5 to 8. Perhaps the most illustrative data set is the first, since the elastic properties of its 
components are closest to those in the system presently under study. Davy and Guild 
achieve a better prediction of Smith’s experimental results with their three-dimensional 
model, especially as the volume fraction rises above 15%. At low volume fractions, 
however, both models predict the actual system behaviour with reasonable accuracy. 

TABLE I 
Material properties used in the FE analyses 

Data set Matrix Material Filler Material 

Modulus Poisson’s ratio Modulus Poisson’s ratio 
CMPal CMPa:I 

Glass spheres in epoxy3’ 3010 0.394 76000 0.23 
Rubber in epoxy33 3210 0.35 0.4 0.499 
Mica in glass35 81360 0.197 416500 0.257 
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0 1  
0 0.1 0.2 0.3 0.4 0.5 0.6 

Volume fraction of filler 

FIGURE 5 
element results for a two-dimensional unit cell and an axisymmetric unit cell. 

Elastic modulus as a function of volume fraction for data set i), i.e. glass sphere sin epoxy. Finite 

0.45, 
0.4 

-- 0.25 
E 

‘z 0.15 
0.1 

0.05 

2D unit cell 

Davy and Guild 
Experimental results 

----- Axisymmetric unit cell, after 1 
0 1  I 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Volume fraction of tiller 

FIGURE 6 Poisson’s ratio as a function of volume fraction for data set i), i.e. glass spheres in epoxy. 

As the volume fraction increases, the three-dimensional model tends to overpredict the 
stiffness, whereas the two-dimensional model underpredicts it. For volume fractions 
around 50%, the three-dimensional model once again makes a good prediction for the 
actual material properties. The two-dimensional model at this point, however, is in 
error by about 30%. To understand why the predictions follow such a trend, the effect 
that the nature of the particle dispersion has on a unit cell must be considered. 
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1.5 

FIGURE 7 
Finite element results for a two-dimensional unit cell and an axisymmetric unit cell. 

Elastic modulus as a function of volume fraction for data set ii), i.e. rubber spheres in epoxy. 

0.18 ~ 

0.16 -- 
0.14 - -  
0.12 
0.1 -- 

0.06 - 
0.04. 
0.02 - 

- -  

Axisymmetric unit cell 

I- 
0.: 

0 1  
0 0.1 0.2 0.3 0.4, 

Volume fraction of mica 

FIGURE 8 
Finite element results for a two-dimensional unit cell and an axisymmetric unit cell. 

Elastic modulus as a function of volume fraction for data set iii), i.c. mica particles in glass. 

The unit cell is chosen to have a mean interparticle distance identical to the expected 
interparticle distance encountered in the real system. The probability density function 
for interparticle distance is only symmetrical for points (as opposed to particles) 
distributed in three dimensions. For particles having a finite radius, or in two 
dimensions, the resulting Poisson distribution function of interparticle distance is 
asymmetrically distributed around this mean value, which has the effect of decreasing 
the contribution from regions of large interparticle distance (or large unit cells). This 
leads to an overestimation of the effect that the particles have on the system behaviour. 
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For high volume fractions, the dispersion approaches a uniform distribution, 
the variability decreases and the three-dimensional predicted properties once 
again approach the actual properties. The overprediction is most apparent at inter- 
mediate volume fractions since the change in stiffness is only small at low volume 
fractions. 

Davy and Guild29 modify the data using a dispersion factor. The dispersion factor 
arises because of two effects: the asymmetry of the probability density function for the 
interparticle distance and a second differential error term that relates the loading that 
individual cells experience to the loading of the whole material. In the axisymmetric 
analysis, the dispersion factor makes very little difference but, in a study of fibre 
composites, employing what is essentially a two-dimensional model, Guild, Hogg and 
Davy3’ found the dispersion factor to make a bigger difference over a longer range than 
is the case in three dimensions. 

Both models predict that Poisson’s ratio decreases with increasing volume fraction. 
The only difference is that the two-dimensional cell predicts a higher rate of decrease at 
volume fractions approaching 50%. The implication is that the filler particles inhibit 
the orthogonal Poisson behaviour. This seems entirely reasonable, even though the 
experimental results do not agree very well with either model at high volume fractions 
of filler. As far as the second and third data sets are concerned; the two-dimensional 
model actually seems to predict the behaviour of the rubber-filled epoxy best, although 
the data are limited, while both models give a reasonable prediction of the mica 
particles in glass. Although the filler and matrix moduli here are both an order of 
magnitude greater than the corresponding matrix and filler in the adhesive currently 
under investigation, the mica is in the form of irregular, angular particles that bear a 
marked resemblance to the adhesive filler. This indicates that the theory for spherical 
particles can be adapted to these random shapes. 

5. MODELLING OF ADHESIVE BEHAVIOUR * 

5.1 Constitutive Adhesive Material Properties 

The two-dimensional analysis can be used to model the adhesive investigated in the 
present study since the volume fraction of filler is relatively low. For the three data sets 
investigated in the previous section, the constitutive material properties were known. 
For the adhesive, only the composite properties are known with any accuracy23. The 
filler has a chemical composition similar to chalk, with a volume fraction around 12%. 
Howatson et a1.38 indicate that a Poisson’s ratio of 0.2 and a tensile modulus in the 
range loo00 MPa to 17000 MPa would not be unreasonable for chalk. For the volume 
fraction involved, it has been found that changing the chalk modulus between these 
values only changes the composite modulus by about 5%, and Poisson’s ratio by about 
0.5%. 

The epoxy matrix properties were established by performing a two-dimensional unit 
cell analysis for varying values of elastic modulus and Poisson’s ratio until the 
calculated composite values matched the experimentally-derived values at a volume 
fraction of 12%. The assumed filler modulus and Poisson’s ratio were, respectively, 
10GPa and 0.2. Table I1 summarises the results. The calculated and experimental 
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I - 
w, - v y J E y  -V,JEz 0 0 0 

- Vxy/Ex - 1/E,  - vzy /Ez  0 0 0 

- V X Z / E X  - v y z / E ,  1 /E ,  0 0 0 
0 0 0 WXZ 0 0 
0 0 0 0 wyz 0 

- 0  0 0 0 0 WXY - 

TABLE I1 
Summary of results from a unit cell analysis of the adhesive system, 
assuming the chalk to have modulus of loo00 MPa, Poisson's ratio of0.2 

and a volume fraction of 12% 

Assumed Matrix Calculated Experimental 
Value Composite value Composite value 

E[MPa] 2892 3265 3265 
V 0.425 0.4057 0.406 

composite material properties agree to three significant figures and the assumed values 
for the matrix are comparable with similar systems (see TaMe I, set i)). 

The matrix D is symmetric, and the nine independent material constants can be 
evaluated from three independent load cases. The unit cell can be modified easily to 
model an array of cracked particles, aligned cracks, holes, undamaged particles or 
debonded particles (see Figure 9). In the following sections, the effective material 
properties for different damaged morphologies are calculated using a two-dimensional 
unit cell and assuming linear elastic constitutive material behaviour. 

5.2.2 Cracked Particles 
A two-dimensional cell represents a cylinder of filler in a block of matrix, which is 
wholly orthotropic when a crack is introduced in the particle. This introduces the 
anomaly that although plane stress or plane strain may be assumed in the third 
dimension, in order to get correct macroscopic behaviour, material properties in all 
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FIGURE 9 Deformed cell shapes to show how the unit cell can be modified to model: a) aligned, cracked 
particles; b) aligned cracks; c) holes; d)  debonded particles. 

three coordinate directions must be supplied to the finite element analysis package. 
Thus, effective material properties in the z-direction must be deduced. Ignoring the 
shear terms for the time being leaves six unknown constants to determine. Three 
independent load cases are, therefore, required to define the compliance matrix. Strain 
in the x- and p-directions can be applied using equations (1) to (2) and their extensions. 
Such loading will induce x- and y-direction stresses, and either a strain or stress in the 
z-direction, depending on whether the model is analysed under plane stress or plane 
strain conditions. The average stress the cell experiences in the x-direction is found by 
integrating the nodal x-direction stresses over a vertical boundary. The average 
y-direction stress is found in a similar way from integrating over a horizontal boundary. 
The products of individual z-direction elemental stresses (or strains) and element areas 
are summed and divided by the cell area in order to give a “weight-averaged”va1ue for 
the stress (or strain) in the z-direction. Table I11 gives the results for three independent 
tensile loading regimes and a shear loading regime. 
The linear terms in the D matrix can be calculated from Table 111 to be as follows: 

D =  

306.5 - 126.9 - 135.6 0 0 0 
- 126.9 336.6 - 142.2 0 0 0 
- 135.6 - 142.2 340.8 0 0 0 

0 0 0 893.7 0 0 
0 0 0 0 1 W Y Z  0 
0 0 0 0 0 WXY 

MPa-’ 

The weight averaged stresses and strains in Table I11 do not give wholly accurate 
results. Consequently, a D matrix calculated using them is not fully symmetric. The 
four terms in the upper left hand corner are unaffected since they do not rely on the 
z-direction stresses or strains, but the differences between the - v J E ,  and - v,JE,, 
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TABLE111 
The four independent load cases for substitution into the compliance matrix for the unit cell containing 

cracked particles 

Load 
Case 

4 0, 6, 7 X Y  Y.r 
[MPa] [;;a] [MPa] [MPa] 

1 0.01 0 0.00707 38.7 14.6 0 
2 0 0.01 0.00673 14.6 35.2 0 
3 0 0.01 0 50.3 69.4 47.3 
4 11.19 0.01 

and - vyz /Ez  and - vzy /Ey  terms is of the order of 5%. The appropriate terms have, 
therefore, been averaged to give the D matrix shown here. Only one shear term has been 
calculated, since the shear moduli related to the other two terms are not needed for a 
plane stress or plane strain analysis. 

It is interesting to note that the l/Ey and 1/E, terms are close to each other, implying 
the cell is near to being transversely isotropic, even though there is no apparent reason 
why this should be the case. The elastic material constants that follow from this matrix 
are given in Table IV. 

5.2.3 Particle Debonding 
Debonded particles were modelled in plane strain using the same unit cell mesh as 
before (see Fig. 3), but contact elements are inserted between the particle and matrix. 
The unit cells were loaded by applying uniform strains in the x- and y-directions using 
the procedure outlined in section 4.2. Converged solutions were found only for the 
cases where the matrix remained in contact with the particle somewhere on its 
periphery. As soon as this condition is breached, the debonded particle becomes 
unconstrained, and the matrix can be considered to have a dispersion of holes. 
Figure 10 plots the variation of strain in the x-direction against the strain in the 
y-direction for 12% of filler. The regions in which the system behaves as if it contains 
holes and in which it behaves as if it contains fully-bonded particles are shown. The D 
matrix in each of these regions remains constant and isotropic. In the intermediate 
regions, the D matrix for the system is a function of the strain field and is orthotropic. In 
other words, both the x- and y-direction elastic moduli will differ depending on how 
much of the particle is in contact with the epoxy. The fully debonded/intermediate 
boundary can easily be found by considering the ratio of equatorial to polar strain of 

TABLE IV 
The elastic constants calculated using the fully compatible unit cell method 

V V vx: Ex EY E,  G X Y  YZ XY 

CMPal CMPal [MPa] CMPal 

3262 2971 2935 1119 0.422 0.4141 0.442 
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DAMAGED PARTICLE-FILLED ADHESIVES 

-+ 
-- 
- -  

-- 

-- 

-- 

-- 

-- 

-- Particle/matrix 

In the shaded 

Material behaves 
as if containing -0.75 _ _  
intact particles 

FIGURE 10 The various regions for debonded particle material behaviour in the adhesive system (particle 
volume fraction of 12%). 

the hole in a unit cell. Figure 11 presents the results as a function of volume 
fraction. 

Figure 12 and 13 show the results from the finite element investigation of debonded 
particles. The figures were derived by giving the unit cell a constant compressive strain 

-0.145 contact 
-0.15 

FIGURE 1 1  The ratio of the y to x strains necessary to cause debonded particles to behave as holes, 
presented as a function of volume fraction. 
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c- a 
t - -  I 

- - - - - -  Material behaviour for 

FIGURE 12 The y-direction stress/strain behaviour for epoxy containing partiallly-debonded particles. A 
compressive strain of 1.51 YO is applied in the x-direction so t6at the unit cell displays intermediate behaviour. 

- 80- a" 

40-- 

- 
0.06 0.08 10.1 EY 0.12 

+ Debonded particle with a 

- Material behaviour for holes with a 

with a constant x strain of - 1.5 1 % 

constant x strain of -I  .5 1 % 
_ _ _ _ _ _  Material behaviour for intact particles 

Debonded particle with a constant x 
strain of - 1 % 

0 #' strain of -1.51% 
,.+,:go -- 

*' -1fjo- 

FIGURE 13 The x;direction stress as a function of y-strain behaviour Tor epoxy containing partially- 
debonded particles. A compressive strain is applied in the x-direction so that the unit cell displays 
intermediate behaviour. Increasing this strain shifts the material response to the right. 

in the x-direction whilst applying a varying y strain so that the strain state remained 
within the shaded region of Figure 10. Figure 12 shows a stress/strain plot in the tensile 
(i.e., y) direction. When the stress (not the strain) is positive, the stress appears to follow 
the locus taken by material containing holes of the same size as the particles. When it is 
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negative, the stress behaviour approaches that of particles still wholly in contact. The 
stress in the tensile direction, then, appears to be unaffected by only partial debonding; 
it behaves either as if the particle is fully debonded or not at all debonded. 

In contrast to this, the stress in the compressive (x) direction has a transition region 
as it changes from behaving like a hole into behaving like an undamaged particle. This 
can be seen in Figure 13 which plots the stress in the compressive (x) direction against 
they strain. It also shows the effect of changing the constant compressive strain. As it is 
increased, the shape of the response is unchanged, and merely moves further to the right 
along the x-axis. The basic stress/strain equations in two dimensions for the debonded 
particle situation may be expressed: 

From Figure 12, it seems that by is piece-wise linear. The values of B and Care given by 
the data for either holes or fully-bonded particles (see Table VI later), according to the 
strain state. Figure 13 demonstrates that ox is not linear, and it was decided to fit a 
second order polynomial to the data of form: 

(T, = a + bs, + ccY + ds,sy + ee: + f sy'. (3) 

Figure 14 plots the results and the values for the constants are given in Table V. The 
parameter a is close to zero compared with the other terms and, taking into account 
the very good fit, the data can be described by the equation: 

c, = bs, + csY + ds,sy + e&: +fey ' .  (4) 

-Fit for an x strain of -1.51% 
Data assuming an x strain of -1 % 

FIGURE 14 The variation of the stress, 5,, with eY and its fit to Eq. (4) for two different strains in the 
x-direction. 
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- EY 0 .- 
Y _ _ _ _ _  Ex 
9 n Actual point for & calculated for 

a 1.51% strain in the x direction 
Actual point for Ex calculated for 
a 1% strain in the x direction 

I. N. BY SH et al. 

TABLE V 
The values of the constants a to f in equafion 4 

a b C d e f 
-0.4867 3937 1218 -15850 1792 -3076 

The matrix equation can be rewritten: 

where g + h = d and are chosen so that the matrix remains symmetrical ( g  and h vary 
with strain). The above equation can be compared with: 

which, knowing the constant values, allows the plotting of the material constants as 
functions of the strain state for a volume fraction of 12%, (Figs. 15 and 16). An 
important point to consider is the limits of applicability of Eq. (4). One limit where the 
matrix just loses contact with the particle equator has already been defined, and 
calculated as a function of volume fraction (Fig. 11). Figures 12 and 13 give a clue as to 
the other limit where debonding of the particle is just beginning. Figure 12 demon- 
strates that the stress in the y-direction is bilinear. As soon as the ji-stress behaves as if 

3 500 

3000 

2500 

2000 

1500 

1000 

500 

a 
-8 -6 -4 -2 0 

Ratio of strains Q/& for Q> 0 

FIGURE 15 The variation of the orthogonal elastic moduli as a function of E~ for constant E,, where x 
denotes the direction of the compressive strain required to keep the particles parlially in contact with the 
matrix. 
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+ + - 
m =  --.--. -.- + -m. 

-.. 
'. -. 

- VYX 
XY 

-_--_ v 

+ 

Actual point for vxy calculated for 
a 1.5 1 % strain in the x direction 
Actual point for vxY calculated for 
a 1 % strain in the x direction 
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0.15 

0.05 

-8 -6 -4 -2 0 
Ratio of strains Q/DC for Q> 0 

FIGURE 16 The variation of the orthogonal Poisson's ratios as a function of eY for constant E,, where x 
denotes the direction of the compressive strain required to keep the particles partially in contact with the 
matrix. 

the material contained holes, then it is postulated that the material as a whole 
experiences intermediate behaviour. The strain at which this happens correlates with 
the strain at which Figure 13 deviates from the straight line asymptote and, physically 
speaking, is the point at which a void first appears at the pole of the particle. This point 
can be identified by equating the expressions for the y-stress in material containing 
fully-debonded and intact particles. 
For holes: 

EhvhEx Eh6y 
b y=-  +- 1 - v ;  1-v; '  

For intact particles 

Ei viex Eiey 
g =- +- 1 - v ;  1 -v ; '  

(7) 

From the unit cell analyses, it is known that the material properties for the two 
morphologies are as indicated in Table VI. 

The changeover between fully bonded and intermediate material behaviour may be 
calculated by equating Eqs. (7) and (8), and substituting in the values in Table VI. It 
occurs when: 

cy = -0.45166, 

Both these limits can be seen in Figures 15 and 16, which show Ex, E,, vyx and vXy for 
varying ratios of horizontal to vertical strain. The graphs were calculated by construct- 
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TABLE VI 
The calculated isotropic material properties for ma- 
terial containing a 12% volume fraction of holes and 

for a 12% volume fraction of intact particles 

Holes Fully bonded particles 

E(MPa) 2117 3265 
V 0.3795 0.406 

ing the matrix Eq. (3, and comparing it with (6). E ,  and vYx were given the appropriate 
values for holes or fully-bonded particles as laid out in Table VI, depending on which 
side of the fully-bonded/intermediate limit was the strain state. The curves for E x  and 
vxy are curve fits to the data obtained from the two different values of strain in the 
x-direction considered. The modulus in the x-direction decreases gradually to its final 
value at the intermediate/hole changeover and vxy rises steadily. The physical interpre- 
tation is that the appearance of a void at the particle pole causes the sudden change in 
all the material constants except Ex. This modulus is not so immediately sensitive to 
events occurring at  the pole. As the amount of debonding increases, however, E x  and vxy  
tend to their limiting values for holes, which for a volume fraction of 12% is finally 
reached when E,/E,  = - 7.35 (Fig. 1 l), although Figures 15 and 16 would suggest that, 
for all practical purposes, no doubt due to very limited contact at the particle equator, a 
ratio of - 5 is adequate. 

6. CONCLUDING REMARKS 

As far as experimentation is concerned, two things have been established: the volume 
fraction of filler, and the nature of crack propagation. Because of commercial sensitiv- 
ity, it is not possible to reveal the exact nature of the adhesive, except that it consisted of 
an epoxy base, filled with 12.0% volume fraction of mineral particles between 0.5 pm. 
and 13 pm in diameter, and a median average diameter of 2.83 pm. Cracking was seen 
to originate at these particles, either by them debonding or cleaving through their bulk. 
The cracks thereafter coalesced to propagate the main crack. 

It was chosen to model the damaged material using the unit cell, advocated by Davy 
and Guild. A two-dimensional square cell was used so that shear could be modelled. 
Although an axisymmetric cell, consisting of a sphere of filler in a cylinder of matrix, is a 
better representation, below 20% volume fraction the benefit is not great. In total, four 
different configurations were considered: fully-bonded particles, fully-debonded par- 
ticles, cracked particles and partially-debonded particles. The first two configurations 
yielded constant but different isotropic material properties. The last two configurations 
yielded orthotropic material properties and, for the partially-debonded particles, the 
material properties are a function of strain state. Moreover, the type of damage affects 
the degree of softening. Debonded particles result in up to a 35% loss of stiffness, 
whereas cracked particles, even normal to the crack plane, only give a 9% reduction 
and, in the plane of the crack, there is virtually no difference. The Poisson effect is 
similarly reduced more for debonded particles than for cracked particles. 
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The preceding sections have shown how the finite element analysis of a unit cell may 
be used to predict elastic properties for material containing a certain morphological 
pattern, distributed randomly in three dimensions. In this case, the recurring pattern 
was particles intact or damaged by cracking or debonding, but the process may be 
equally well applied to other morphologies, for instance, rubber-toughened epoxy or 
fibre-reinforced polymer. In these last two examples, the technique has been used to 
investigate the stresses in the matrix induced by the presence of the second phase, but 
the effective damaged properties calculated here are for use in two distinct ways. 

0 A region in a specimen can be assigned appropriate degraded material properties 
based on a finite element analysis of the extent of damage. The redistribution of 
stress caused by the region can, therefore, be modelled, and the possible crack 
shielding effects analysed. Material failure parameters determined by explicitly 
modelling the damaged region, such as maximum stress, strain or critical strain 
energy release rate, will be more accurate than those determined assuming 
undamaged material. 

0 By simulating the progression of damage actually observed, damage initiation and 
propagation criteria can be generated. These can then be used to determine the 
growth of the damage zone, and hence the response of any joint made using this 
adhesive. 

The worth of the approach is fully realised when the plastic response of the system is 
taken into account. From an analysis of the “best” and “worst” conditions (i.e., a 
fully-debonded particle and a fully-intact particle), a comparison with the tensile 
stress/strain curve gives a probability density function of particle failure. This, of 
course, is a function of strain state and may be implemented in a finite element analysis, 
so that the amount of damage in terms of percentage of debonded filler at any 
particular point may be assessed. 

From a knowledge of the failure loading for a particular adhesive joint configuration, 
a finite element model may be constructed, incorporating the appropriate level of 
damage in the macroscopic material properties. A unit cell can be given the critical 
loads extracted from this macro model so that failure criteria may be developed. This is 
the subject of current work and will be reported at a later stage. 
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